С.А. Денисенко
Г.И. Губина-Вакулик
А.В. Андреев
Харьковский национальный медицинский университет

Ключевые слова: электромагнитное излучение, гипофиз, надпочечники, семенники потомков.

Дата принятия: 17.08.2016
Дата присвоения: 08.09.2016

УДК 616.432

МОРОФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ В СИСТЕМАХ ГИПОФИЗ-НАДПОЧЕЧНИКИ И ГИПОФИЗ-СЕМЕННИКИ У КРЫС, ВНУТРИУТРОБНО ПОДВЕРГАВШИХСЯ ВОЗДЕЙСТВИЮ СЛАБОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Реферат. В эксперименте на крысах, внутриутробно подвергавшихся воздействию слабого электромагнитного излучения сантиметрового диапазона, изучены морфологические особенности гипофиза (АКП и ПГЦ), надпочечников, семенников. У взрослых молодых крыс потомков, внутриутробно подвергавшихся хроническому воздействию ЭМИ сантиметрового диапазона, наблюдалась общая морфофункциональная активация системы АКП-Надпочечники, сужение сперматогенеза у самцов на фоне гормональной гиперстимуляции.

© С.А. Денисенко, Г.И. Губина-Вакулик, А.В. Андреев, 2016

Denisenko S.A., Gubina-Vakulik G.I., Andreev A.V. Morphological changes in pituitary-adrenal and pituitary-testes systems in rats which were intrauterine exposed to weak electromagnetic radiation, Abstract. Electromagnetic radiation (EMR) at the household level is now widespread. Studies of changes in progeny under the action of EMR on the mother during pregnancy are very rare. Methods. In the experiment on rats prematurely exposed to weak EMR in the centimeter range, the morphological features of the pituitary gland, adrenals, testes were studied. Adult female's mothers (5 individuals) were exposed to low-intensity EMR centimeter range (1-10 cm); radiation energy was less than 3 mW/cm². Exposure to EMR was performed daily for 4 hours during 1 month before pregnancy and during the entire period of pregnancy. Results. In three months old progeny of the main group (15 individuals) compared with the control group (14 individuals) morphofunctional activation of adrenergocortical cells (ACTC)-adrenal system was identified: ACTC hyperplasia and a significant increase of their nuclei size, hyperplasia of spongiosocytes and increase of their nuclei size. The adrenal medulla in the main group showed a decrease in the number of inactive neuroendocrine cells, and significant increase in their nuclear area in males and females. The study of the pituitary-testes system found in the testes of main group males thinning of spermatogenic epithelium (reduction of sperm production). Islets of Leydig cells in the interstitium were hyperplastic, nuclei of Leydig cells were increased. In the pituitary gland of the main group animals gonadotropic cells occur in fewer than in the control group, but they had larger nuclei. Conclusion. In adult young rats prematurely exposed to chronic effects of EMR in the centimeter range, there is a general morphofunctional activation of the ACTC-adrenal system and decrease of spermatogenesis in male on the background of their hormonal hyperstimulation.

Key words: electromagnetic radiation, the pituitary gland, adrenal glands, testes, progeny.

Citation: Denisenko S.A., Gubina-Vakulik G.I., Andreev A.V. [Morphological changes in pituitary-adrenal and pituitary-testes systems in rats which were intrauterine exposed to weak electromagnetic radiation] Morphologia, 2016(10)(3):124-8, Russian.

Введение

В последние десятилетия существенно изменились условия жизни человека. Наблюдается усиление электромагнитного фона во всех сферах жизнедеятельности, что делает фактор электромагнитного излучения (ЭМИ) весьма значимым и требующим изучения его влияния на состояние здоровья населения.

Современные исследования расширили представление о механизмах действия ЭМИ. Основное значение в развитии нетелевых эффектов принадлежит сложным электрохимическим процессам, которые происходят на уровне клеточных и субклеточных структур вследствие резонансного поглощения энергии (аннотиофлуоресцентный эффект): поляризация мембран, изменение их проницаемости, возникновение химических или структурных изменений в компонентах мембраны, структурные изменения в телах или любой критической молекуле на любой стадии метаболического цикла, а также взаимодействие собственных зарядов электриче-
ски активных элементов клеток с действующим электромагнитным полем [1, 2, 3].

Несмотря на то, что указанные явления проявляются на клеточном и субклеточном уровнях, эти эффекты на организованном уровне изучены недостаточно. Тем более, доминирующее количество исследований проводится прямо на организме, непосредственно испытываемом ЭМИ воздействие [4, 5]. Нас же заинтересовали потомки после воздействия ЭМИ на беременную особь.

Цель работы: методом морфометрии определить изменение в системах гипофиз-недоношенных и гипофиз-семенниковых у животных-потовков при воздействии слабого электромагнитного излучения на животных-матерей во время вынашивания потомства.

Материалы и методы

Исследование проведено на трехмесячных крысах-самцах линии Вистар и их потомках трехмесячного возраста. Взрослые самки-матери (5 особей) подвергались воздействию низкоинтенсивного ЭМИ антимагнитного диапазона (1-10 см); излучение энергии, выражаемое в плотности потока мощности в зоне, где находились экспериментальные животные, составляло менее 3 мВт/см². Это уровень, не вызывающий теплового эффекта [6]. Воздействие ЭМИ проводилось ежедневно по 4 часа в течение 1 месяца до беременности и в течение всего периода беременности. Для облучения животных использовался излучатель в виде радиоаппаратуры прямоугольной формы с площадью основания 875 см² (излучатель-высочастотный генератор ГЧ-190-3/1, излучающий энергия типа П-6-23А). Животные - будущие матери особей контрольной группы (5 особей) ежедневно по 4 часа в сутки выдерживались в камере, соответствующей по размерам камере-прибора.

Полученное потомство основной (15 особей) и контрольной (14 особей) групп выводилось из эксперимента в трехмесячном возрасте путем декапитации. Животные содержались в стандартных условиях вивария. Постановка эксперимента проведена согласно требованиям, предъявляемым к экспериментам на животных (Украина, 2001; Страбург, 1985).

Морфологическое исследование тканей проведено согласно стандартной методике. Использовалась окраска срезов гематоксилин-эозином, галоцианиновыми красителями на нуклеиновые кислоты, ставилась PIIK-реакция. Микроскопирование осуществлялось на микроскопе "Axioskopplus" (Zeiss, ФРГ), с последующей морфометрией на компьютерных изображениях микропрепаратов с помощью программы "Vi- duTest" (СПб, РФ). Статистический анализ проведен методом вариационной статистики при сравнении средних результатов путем определения критерия Стьюдента.

Результаты и их обсуждение

Рассматривая систему гипофиз-надпочечников, удалось выявить следующие морфометрические изменения. При сравнении с морфологической картиной надпочечников у потомков контрольной группы в основной группе и у самцов и у самок пучковой зоны коры надпочечников более мелкоклеточной, чем свидетельствует достоверное уменьшение количества ядер клеток в зоне зрелых (табл. 1). В окраске гематоксилин-эозином цитоплазма спонгиоцитов более эозинофильная, мало вакуолизирована, с уменьшением запасов ионосодержащей жидкости - хлористых, что свидетельствует об активной продукции кортикоэстероидов. Клетки эндокринася скоплены в зонах-ядрах, выглядят яркими, ядра - более светлыми. У эндокринасы имеют признаки повышенной морфовакуолизационной активности.

| Таблица 1 |
| Морфометрические показатели спонгиоцитов пучковой зоны и эндокриноцитов мозгового вещества надпочечников трехмесячных крыс-потовков |
|-----------------|-----------------|-----------------|-----------------|
| | Контрольная группа | Основная группа |
| | самцы | самки | самцы | самки |
| Количество спонгиоцитов в течение 6 ч | 15,1±0,5 | 14,5±0,5 | 22,6±1,2* | 24,0±1,1* |
| Площадь ядер спонгиоцитов, мкм² | 19,7±0,5 | 20,8±0,3 | 24,4±0,8* | 18,1±0,3* |
| Площадь ядер вакуолизированных спонгиоцитов, мкм² | 17,5±0,9 | 17,9±0,5 | 20,9±0,8* | 21,7±0,7* |

* - р < 0,001 относительно контрольной группы.

У самцов в пучковой зоне коры надпочечников ядра спонгиоцитов выглядят более крупными, более светлыми, с просматривающимися ядрашками, цитоплазма с мелкими прозрачными вакуолами. Кариометрически выявлено достоверное увеличение площади ядер спонгиоцитов у самцов-потовков основной группы по сравнению с контрольной группой (табл. 1).

MORPHOLOGIA • 2016 • Том 10 • № 3 • МОРФОЛОГИЯ
У самок ядра спонгиоцитов имеют овальную достоверно меньшую площадь по сравнению с контрольной группой (табл. 1), что можно трактовать как повышение морфофункциональной активности отдельных спонгиоцитов на фоне гиперплазии у самцов и понижение морфофункциональной активности отдельных спонгиоцитов на фоне их гиперплазии у самок. Это различие может быть свидетельством более сильной реакции пучковой зоны коры надпочечников у самцов по сравнению с самками, в ответ на внутриточное воздействие ЭМИ.

Морфологическая картина подтверждается данными биохимических исследований, в этом же эксперименте опубликовано ранее; у животных этой группы выявлен достоверно более высокий уровень кортикоэстероидов в сыворотке крови у самцов в большей степени, чем у самок [7].

При микроскопировании мозгового вещества надпочечников отмечается, что у животных основной группы по сравнению с контрольной группой происходит уменьшение количества залежных нейтрофилонкурентов. Активно работающие НЕЦ имеют крупное зернистое ядро, интенсивное гипофиза, нередко вакуолизированная, чем в контрольной группе. Это свидетельствует об активизации синтеза и выведения катехоламинов. Картина характеризуется: включение анапластических клеток в залежные нейтрофилонкурентов у самцов и самок основной группы по сравнению с контрольной (табл. 1), что совместно с результатами гистологических наблюдений приводит к активной морфофункциональной активности мозгового вещества надпочечников у взрослых животных, внутриточном усилении самок по сравнению с контрольной группой.

Удалось также наблюдать, что у взрослых потомков О группы наблюдается адаптивная активация, и мозговое вещество надпочечников регулирует функцию надпочечников.

Адренокортекс оркотропозиты концентрируются в залежной зоне ядра гипофиза, где у животных основной группы утолщается абсолютное доминирование АКГ, тогда как в контрольной группе АКГ присутствуют в заметно меньшем количестве (рис. 1.2).

Кардиометрия позволила выявить достоверное увеличение площади ядер АКГ в гипофиазе животных основной группы по сравнению с контрольной группой: соответственно Огр. 21,5 ± 0,3 мм², Кгр. 19,4 ± 0,3 мм² (р < 0,001), на основании выявленной гиперплазии АКГ и увеличением размера ядер АКГ можно сделать предположение о более интенсивном синтезе АКГ в гипофиазе этих животных. Т. е. внутриточное воздействие ингибитового ЭМИ обусловливает формирование у взрослых потомков более активного состояния адаптивной системы гипофиза-наркотропических.

Рис. 1. Заднекентральная зона аденогипофиза трехмесячного кролика-тоток. Контрольная группа. Окраска по Маллори. ×100.

Рис. 2. Заднекентральная зона аденогипофиза трехмесячного кролика-тоток. Основная группа. Увеличенное количество АКГ и увеличенные залежи АКГ. Окраска по Маллори. ×100.

При изучении системы гипофиза-семеник гистологически также были выявлены некоторые изменения.

В семениках основной группы в сравнении с контрольной семенники канальцы размечены более равно, т. е. их меньше, а строма более объемиста, компактна, с большим содержанием кольцевидной и гликозаминогликанов. Эпителионадермальный слой, выстилающий базальной мембраной, распространяется на большую поверхность, в плевральной полости, в отсутствие гиперплазии и утолщения экстраоклеточного матрикса. Основной слой структуры состоит из эпителиоцитов, в строме видны клетки, которые имеют более крупные ядра, чем в контрольной группе. Клетки Лейдига представлены сперматогенными в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли. Основной залежной клеток Лейдига в интерстиции содержит увеличенные колонии гемопоэтических и в разной степени дифференцировки и клетками Сертоли.
эозинофильную цитоплазму и тёмное пикноцитарное ядро, т. е. являются гибущими путём апоптоза), тогда как в группе К они отсутствуют. Измерение площади ядер активно функционирующих клеток Лейдига выявило, что в группе О наблюдается достоверное её увеличение: О гр. - 15,0±0,4 мкм², К гр. - 11,0±0,4 мкм², р<0,05). Ранее у этих же животных был определен уровень тестостерона в крови, выявлено достоверное, хотя и небольшое повышение этого показателя [7].

Рис. 3. Семенники трехмесячной крысы основной группы. Гипертрофированный островок из клеток Лейдига. Округ гематоксилин-эозином. ×400.

Таким образом, в семенной железе внутриутробно получавших воздействие ЭМИ самцов имеются морфологические признаки снижения продукции сперматозоидов, гиперпрогестеронпродукция изгврст, видимо, компенсаторную роль.

При исследовании гипофиза оказалось, что морфофункциональное состояние гонадотропных адено-гипофиза, регулирующих половые железы соответствует выявленным морфофункциональным особенностям семенных желез.

В основной группе гонадотропины наблюдается в меньшем количестве, чем в контрольной группе, но имеют больший размер ядер Отр. 22,2±0,6 мкм²; Кгр. 17,8±0,5 мкм², (p<0,001), что, очевидно, компенсирует уменьшение количество ГТГ. Т. е. вероятно, повышение гормональной активности семеников при внутриутробном воздействии ЭМИ имеет компенсаторный характер относительно снижения количества сперматогенитального эпителия, а гонадотропии стимулируют семеники. Снижение количества ГТГ в адено-гипофизе взрослых потомков может быть обусловлено как внутриутробно за-ложенное гипоплазией, так и ферсированным их

апоптозом при высоконактивном функционировании.

При обзоре научной литературы по изучаемым вопросам действительно оказалось, что в многочисленных экспериментальных исследованиях изучается непосредственное влияние ЭМИ на организм, а исследований, посвященных первичным эффектам, практически нет или они проводятся очень общо, не выявляя никаких патологических изменений у потомков [8].

Проведенное нами исследование с изучением последствий для потомков влияния ЭМИ на материнский организм выявило у потомков снижение морфофункциональной активности в системе АКТГ-наличников (активацию), что свидетельствует о внутриутробно произошедшей адаптации, сохраняющейся в течение постнатального онтогенеза.

Наиболее часто исследователи изучают влияние ЭМИ на мужскую половую железу, в частности, выявлено перестрашение сперматогенитального эпителия каналцев семенников [5]. Другие авторы [9] обнаружили уменьшение количества клеток Лейдига в ткани семенников крыс под воздействием ЭМИ. Наше результаты свидетельствуют об уменьшении продукции сперматозоидов у молодых взрослых потомков, несмотря на компенсаторно развивающуюся гормональную гиперстимуляцию.

Можно предположить, что в недалеком будущем у таких особей может развиться относительная гормональная недостаточность в системе ГТГ-семениники, также как в системе АКТГ-наличников. Эти факты могут свидетельствовать о прогнозе ускоренного старения потомков матерей, перенесших хроническое воздействие слабым ЭМИ сантиметрового диапазона.

Заключение

Морфологическими методами установлено, что у взрослых молодых потомков самок крыс Вистар, в течение беременности подвергшихся хроническому воздействию ЭМИ сантиметрового диапазона, наблюдается общая морфофункциональная активация системы АКТГ-наличников, снижение сперматогенеза у самцов на фоне гормональной гиперстимуляции.

Перспективы дальнейших исследований

Результаты данного экспериментального исследования обосновывают необходимость проведения широкого клинического исследования с изучением отдаленных последствий у потомков, внутриутробно (через материнский организм) перенесших хроническое воздействие ЭМИ сантиметрового диапазона.
Літературні джерела

Денисенко С.А., Губина-Вакулік Г. І., Андрєєв А.В. Морфологічні зміни в системі гіпофіз-надіриви-семінікарії у шурів, що внутрішньоутробно зазнавали впливу слабкого електромагнітного випромінювання.

Реферат. В експерименті на шурів, що внутрішньоутробно підваждалась дії слабкого електромагнітного випромінювання сапгіметрового діапазону, виявлена морфологічна особливості гіпофізу, надірив, сім'янникових шлуночків, сім'янних вугіл. У дорослих молодих шурів-нашадків, що внутрішньоутробно підваждалися хронічному впливу ЕМІ сапгіметрового діапазону, спостерігається загальна морфофункциональна активізація системи адренокортико-гіпофіза-сем'янникових шлуночків, зниження сперматогенезу у самців на тлі гормональної гипергіперсемії.

Ключові слова: електромагнітне випромінювання, гіпофіз, надіриви, насінники, насінники нашадків.